9211 Review

High Performance Computational Science for MESA

June 2005

Steve Thomas

Sandia National Laboratories, 2005-3652P

Overview

Objectives

Accomplishments

MESA Culture and Challenges for 9200

RF Ohmic Switch Design Optimization

CIS R & D Opportunities

Objectives

Goal:

9200 contributions recognized as indispensable to MESA success and vision.

Objectives:

Establish a 9200 presence within MESA TOP

Demonstrate the value of optimization

Serve as point of contact ("ambassador") for broadening 9200's involvement.

Membership in two MESA TOP product teams

- RF Ohmic Switch
- -Micro SAR Phased Array Antenna

MESA TOP Co-Location

0.5 FTE MESA program funding for FY06

Ohmic Switch team will undertake optimization-based re-design, fabrication, test cycle in <u>FY05</u>

Nature of the MESA Opportunity for 9200

Strengths

- Excitement of creating new products with new technology
- <u>New design playing field</u> creates new, valuable opportunities for modeling, simulation and optimization

Challenges

- MESA TOP recognizes, funds microtech <u>product</u> <u>team</u> contributions exclusively
- Product teams are <u>multidisciplinary</u>
- Contribution is measured by acceleration of <u>product</u> <u>readiness</u> - "Research publication is counterproductive."

Unique Microsystems Design Considerations

- Design constraints, opportunities quite different from macro world
 - –e.g. use RF coupling rather than avoid it.
- Many designs can be built on a single wafer
 - Build all variations, test to see what works best!
- Long Fab-times: multi-level processes: several months
 - e.g., SUMMiT V
- Quantitative visual inspection of product requires significant effort

Reconfigurable Circuits and Devices

8.9 mm

- RF MEMS Switches
 - Enabling technology
 - <0.1 dB loss
 - Near-zero Power
 - High Linearity

Chris Dyck, January 2005.

Sandia Ohmic RF MEMS Switch

Background for Sim. Animation

• 156.8 V for 7.1 μs, 100 V Hold at 15.2 μs (0.5 μs slew time).

Design Optimization Approach

Spring Switch Plate Ground
Bondpad Resistor

- Add 'UP' attractor plates under cantilevers
- Resonance energy reduced, raised a decade in frequency
- *Shape optimization* for dimensions, locations of cantilevers, ES pads

Contact Actuation

Bondpad Scale: —— 100 µm

Opportunities for 9200

Mod./ Sim./Optimization in the hands of the Designer-Inventor

Role of M/S/O for new design different than qualification/certification

Multiphysics/RF Simulation

RF Codes Emphasis and Eiger are standalone

Dynamics

Eiger-Xyce?

Reliability-Robust Design

Now doing design under (Fab) uncertainty w/o tools

Characterize Fabrication Uncertainties

Fabrication variations are large, treated empirically by 100% test What are the drivers?

Connect experiment and simulation results – Predictive Science

Lots of arrayed experimental data

